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Abstract 

In this paper, an efficient, novel and simple method is proposed to 
approximately solve linear ordinary differential equations (ODEs), emphasis is 
put on high-order linear ODEs with variable coefficients. What’s more, by using 
the least squares support vector regression (LS-SVR) method, numerical 
solution based on LS-SVR for high order linear ODEs with variable coefficients 
can be easily solve. The following illustrative examples are given to demonstrate 
the effectiveness and high accuracy of we proposed method. 
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___________________________________________________________________ 

1. Introduction 

High order linear ODEs with variable coefficients can be found in the 
mathematical formulation of physical phenomena in a wide variety of 
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applications especially in science and engineering. Depending upon the 
form of the boundary conditions to be satisfied by the solution, problems 
involving ODEs can be divided into two main categories, namely, initial 
value problems (IVPs) and boundary value problems (BVPs). Exact 
solutions for these problems are not generally available. Hence, besides 
numerical approaches, some approximate methods are usually as 
powerful tools for solving initial-value or boundary-value problems 
associated with ordinary differential equations (ODEs) [1]. 

Kernel least squares support vector machines (LS-SVMs) are a potent 
methodology for solving pattern recognition and function estimation 
problems, which based on Vapnik and Chervonenkis structural risk 
minimization principle [2]. They show better widespread ability 
compared to other machine learning methods on a wide variety of real-
world problems, such as image segmentation [3], optimal control [4], time 
series prediction [5], pattern classification [5, 6], matrix learning [7] and 
so on. In this way, one maps data into a high dimensional feature space 
H by introducing a kernel function and solves a linear regression problem 
in H, which leads to solving quadratic programming problems. The 
function estimation by regression is of great importance in many fields of 
research such as bioinformatics, relevant literature such as DNA 
microarray gene expression data [8], control theory, relevant literature 
such as non-parametric regression and density estimation under control 
of modality [9], economics, such as Statistical Analysis of Multiple 
Regression with Crisp and Applications in Analyzing Economic Data of 
China [10], information science and signal processing. The main 
challenge in developing a useful regression model is to capture accurately 
the underlying functional relationship between the given inputs and 
their output values. Once the resulting model is obtained it can be used 
as a tool for analysis, simulation and prediction. 

As far as the numerical solution of high order linear ODEs with 
variable coefficients is concerned, there has many kinds of other method, 
such as the Adomian decomposition method, Taylor expansion approach, 



NUMERICAL SOLUTION BASED ON LS-SVR … / IJAMML 6:2 (2017) 87-101 89

Volterra integral equation [11], an improved starting step of the G-B-S-
method [12], two-parameter families of predictor-corrector methods [13] 
and so on. In this paper, in order to improve the speed of solve such 
problems, we utilize LS-SVR to solve above problem, it use the idea in LS 
[14] and SVR [15], it should be pointed out that our LS-SVR, not only 
improve the speed of calculate, but also insure the accuracy. 

This paper is organized as follows. Section 2 briefly introduce the 
kernel LS-SVR and some concepts. Section 3 proposes numerical solution 
based on LS-SVR. Numerical examples and experimental results are 
described in Section 4. Finally, concluding remarks are given in Section 
5. 

2. Kernel LS-SVR and Some Concepts 

Consider an m-order variable coefficient linear ordinary differential 
equations: 
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=  we call ( )yL  as m-order linear differential 

operator, we main consider how to utilize LS-SVR get the approximate 
solution of Equation (2), so we suppose Equation (2) have the solution 

looks like ( ) ( ) .btwty T +ϕ=  Let RRR nn →×:k  be a Gaussian radial 
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basis function (RBF) kernel function with the reproducing kernel Hilbert 

space (RKHS) H and the nonlinear feature mapping ,: HRn →φ  
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3. Numerical Solution Based on LS-SVR 

In this section, we mainly study how to find numerical solutions of 
the Equation (2) by using LS-SVR. Specifically, we assume that the 

numerical solution of the Equation (2) has the form ( ) ( ) btwty T +ϕ=  and 
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wish that the unknown Hw ∈  and Rb ∈  can be learned by kernel LS-
SVR. For this purpose, we first discrete the domain [ ]ba,  of the Equation 

(2) into a set of collocation points cttta N =<<<= "21  with the 

same step size ,10 −
−= N
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Then the Equation (3) can be expressed with matrix: 
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We can write down the Lagrange function of Equation (4): 
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4. Numerical Examples 

In order to demonstrate the effectiveness of the proposed method, in 
this section, we consider variable coefficient linear ordinary differential 
equations, that have analytic solutions. All computations are 
implemented in Matlab 2014b [9] on a PC with 2.5GHz CPU and 4GB 
memory. The RBF kernel function is chosen in experiment and we set the 
parameter C and sigma. In this paper, we choose four integral equations 
and their analytic solutions and listed them as follows equation (a)-(d). 
All numerical results are listed in Tables 1-4, and we describe the 
appreciate solution and exact solution vividly through Figure 1, where 
red line in Figure 1 (a)-(d) represent numerical solution while green line 
represent exact solution.  
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(a): 

( ) ( ) ( ) [ ],1,0,coscos1 ∈=′−−′′ xxexyxxy x  

( ) ( ) ,10,00 =′= yy  

( ) .xexy =  

Table 1. Comparison for (a) 

x Exact solution Numerical solution Absolute error 

0 1.0000 1.0000 0.0000 

0.1 1.1052 1.1059 0.0007 

0.2 1.2214 1.2242 0.0028 

0.3 1.3499 1.3557 0.0059 

0.4 1.4918 1.5016 0.0097 

0.5 1.6487 1.6628 0.0141 

0.6 1.8221 1.8407 0.0186 

0.7 2.0138 2.0365 0.0227 

0.8 2.2255 2.2511 0.0256 

0.9 2.4596 2.4858 0.0262 

1 2.7183 2.7413 0.0230 

(b): 

( ) ( ) ( ) ( ) [ ],1,0,0
cos

1tan 2 ∈=−′−′′ xxy
x

xyxxy  

( ) ( ) ,10,00 =′= yy  

( ) ( ).tan xxy =  
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Table 2. Comparison for (b) 

x Exact solution Numerical solution Absolute error 

0 0.0000 0.0000 0.0000 

0.1 0.0998 0.0987 0.0011 

0.2 0.1987 0.1950 0.0037 

0.3 0.2955 0.2886 0.0069 

0.4 0.3894 0.3797 0.0097 

0.5 0.4794 0.4682 0.0112 

0.6 0.5646 0.5541 0.0106 

0.7 0.6442 0.6374 0.0069 

0.8 0.7174 0.7180 0.0006 

0.9 0.7833 0.7959 0.0126 

1 0.8415 0.8712 0.02698 

(c): 

( ) ( ) ( ) ( ) ( ) ( ) [ ],1,0,sincossin ∈−=+′−′′ xxxyxxyxxy  

( ) ( ) ,10,00 =′= yy  

( ) ( ).sin xxy =  

Table 3. Comparison for (c) 

x Exact solution Numerical solution Absolute error 

0 0.0000 0.0000 0.0000 

0.1 0.0998 0.0990 0.0009 

0.2 0.1987 0.1957 0.0030 

0.3 0.2955 0.2898 0.0057 

0.4 0.3894 0.3810 0.0084 

0.5 0.4794 0.4690 0.0104 

0.6 0.5646 0.5535 0.0111 

0.7 0.6442 0.6342 0.0100 

0.8 0.7174 0.7108 0.0065 

0.9 0.7833 0.7832 0.0002 

1 0.8415 0.8510 0.0095 



NUMERICAL SOLUTION BASED ON LS-SVR … / IJAMML 6:2 (2017) 87-101 97

(d): 

( ],1,0,951 32 ∈+++=+′+′′ xxxxyyxy  

( ) ( ) ,00,00 =′= yy  

( ) .32 xxxy +=  

Table 4. Comparison for (d) 

x Exact solution Numerical solution Absolute error 

0 0.0000 0.0000 0.0000 

0.1 0.0110 0.0182 0.0072 

0.2 0.0480 0.0729 0.0249 

0.3 0.1170 0.1637 0.0467 

0.4 0.2240 0.2905 0.0665 

0.5 0.3750 0.4529 0.0779 

0.6 0.5760 0.6503 0.0491 

0.7 0.8330 0.8821 0.0743 

0.8 1.1520 1.1477 0.0043 

0.9 1.5390 1.4462 0.0928 

1 2.0000 1.7766 0.2234 

5. Conclusion 

As we mentioned above and our excellent result of experiment, it can 

be seen that the largest absolute errors are not beyond 410−  magnitude 
order. What is more, from the Figure 1, we can know that the red line 
and the green line curve almost coincide completely in Figure 1(a), Figure 
1(b), and Figure 1(c), it meaning that the exact solution and numerical 
solution curve almost coincide completely, which show that the proposed 
algorithm could reach a quite agreeable accuracy. Therefore, we can see 
that we have proposed an approximal method for the solution of variable 
coefficient linear ordinary differential equations based on LS-SVR 
algorithm. This new algorithm can get the solution of Equation (1) by 
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solving a convex quadratic programming, which has a powerful 
regression ability. Then verified the solving methods that we have given 
by examples. Experimental results show that our LS-SVR method really 
reached a high accuracy. 

 

(a) Comparison for equation (a). 
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(b) Comparison for equation (b). 

 

(c) Comparison for equation (c). 
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(d) Comparison for equation (d). 

Figure 1. Diagrams of comparisons for four examples. 
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